Advent of Code 2018 Week 1: Recap

So I’ve decided to do Advent of Code this year again (no surprise there), but this time, I’m encouraging everyone in HSV.py to join me as well.

I’ve completed 8 challenges, and thought it was time for a recap.  I plan on breaking down solutions day by day, and then ending with some lessons learned that might help others.  I compete each night with ugly hacked together code, then work on refactoring it the next day.  What I share is the refactored version (Don’t think I spit something like this out in just an hour).  You can find all my code on my GitHub

So let’s get started.

Continue reading

Advertisements

AdventOfCode2017 Day 5 and 6

Another two days down, no sweat (minus a segfault on day 6, but shhhh.)

Day 5’s challenge was to take a list of jump offsets and determine how many jumps you need to take before exiting the block of code (modifying the jump offsets each time)

Day 6’s challenge was to take a list of memory banks, run through a balancing algorithm regarding allocations, and count how many steps until an infinite loop.

Let’s take a look at the code, as they clock in at <40 lines apiece.

Continue reading

AdventOfCode2017 – Day 4

Hooray, another easy one.  After Day number 3, I could certainly use it.  This challenge involved taking a list of passphrases, and counting up the number of passphrases that had no duplicate words.   This seems simple, just a split, sort and application of std::unique.

Part 2 had me check for anagrams rather than duplicate words.  This was also easy, as I could map over a sort function to each word in the passphrase, and then check for uniqueness.

Let’s look at the code


#include <algorithm>
#include <iostream>
#include <string>

#include "algo.h"
#include "input.h"

std::string sortString(std::string s) {
    std::sort(s.begin(), s.end());
    return s;
}

bool isUnique(const std::string& passphrase) {
    auto words = algo::map(input::split(passphrase), sortString);
    std::sort(words.begin(), words.end());
    return words.end() == std::unique(words.begin(), words.end());
}

int main() {
    auto passPhrases = input::readMultiLineFile("input/input04.txt");
    auto count = std::count_if(passPhrases.begin(), passPhrases.end(), isUnique);
    std::cout << count << "\n";
    return 0;
}

Super straight forward.  I think the trickiest thing was std::unique, because I didn’t realize it returned the end iterator of the range.  But once I figured that out, this wasn’t so bad.

Stay tuned for day 5!

AdventOfCode2017 Day 3

So this day was a tad bit rougher.  I wasn’t expecting the sudden difficulty increase on day 3.  The problems were straight-forward enough, but I didn’t want to brute force my way through them.  Unfortunately, I didn’t get the math worked out, so brute force became one of my last options

However, on the bright side, I got to play with std::optional, so I got that going for me.

 

I’m going to have a tough time explaining the problem any better than advent of code, so I’m just going to link you there instead

Continue reading

AdventOfCode2017 Days 1 and 2

It’s December and you know what that means!  Advent Of Code is back!.

This year, I’m not going to try the 25 languages in 25 days, but instead focus on my C++ skills.  More specifically, here are the constraints I am putting on myself.

  • Use C++17 where I can if it makes sense
  • Avoid raw loops on containers unless I have a performance concern
  • If there are any raw loops needed, see if it can be abstracted into a generic algorithm

So Challenge 1: here we go. Continue reading

Advent Of Code 2016 Day 21 (PHP)

Advent of Code 2016 Day 20 (F#)
Advent of Code 2016 – Day 19 (Swift)

Advent of Code 2016 Day 18 (Bash)

Advent of Code 2016 Day 17 (Ruby)

Advent of Code 2016 Day 16 (Scala)

Advent of Code 2016 Day 15 (Typescript)

Advent of Code 2016 Day 14 (Go)

Advent of Code 2016 Day 13 (Lua)
Advent of Code 2016 Day 12 (C#)
Advent of Code 2016 Day 11 (Groovy)

Advent of Code 2016 Day 10 (OcaML)

Advent of Code 2016 Day 9 (Factor)

Advent of Code 2016 Day 8 (c++)
Advent of Code 2016 Day 7 (Javascript)
Advent of Code 2016 – Day 6 (Julia)
Advent of Code 2016 – Day 5( Java 8)

Advent of Code 2016 – Day 4 (Perl 6)

Advent of Code 2016 – Day 3 (Clojure)
Advent of Code – Day 2 (Python 3)
Advent Of Code 2016 – Day 1(Haskell)

Day 20

Start: 1/6/2016

Finish 1/7/2017

Language: PHP

SPOILER ALERT: If you have any inkling, any whatsoever, to work on the Advent of Code…. DO NOT READ THIS BLOG POST.  DO NOT LOOK AT MY GITHUB PROJECT.  It is no fun if you’re not solving it yourself, and you’ll feel so much better about yourself if you can figure it out without looking up an answer.  This blog post is not to give away the answer, but instead, is there for people to learn from.

As always, the following code is in my GitHub: https://github.com/pviafore/AdventOfCode2016

The Challenge

This challenge was to take a string, and apply a series of transformations on it (Swapping letters, rotating, reversing, etc.)

My idea was to keep an array where the head pointer moves around based on rotations, and operating based on that (similar to the idea of a circular array)

 

Part 1

Code Code Code ……


<?php

$head = 0;
$arr = array("a", "b", "c", "d", "e", "f", "g", "h");

function convertIndex($index){
    global $arr, $head;
    $newIndex = $index+$head;
    while($newIndex < 0){
        $newIndex += sizeof($arr);
    }
    return  $newIndex%sizeof($arr);
}
function getCharAt($index)
{
    global $arr, $head;
    $newIndex =convertIndex($index);
    return $arr[$newIndex];
}

function setCharAt($index, $value)
{
    global $arr, $head;
    $arr[convertIndex($index)] = $value;
}

function swapPos($pos1, $pos2) {
    $tmp1 = getCharAt($pos1);
    $tmp2 = getCharAt($pos2);
    setCharAt($pos1, $tmp2);
    setCharAt($pos2, $tmp1);
}

function swapLetters($letter1, $letter2) {
    global $arr;
    $index1 = array_search($letter1, $arr);
    $index2 = array_search($letter2, $arr);
    $arr[$index2] = $letter1;
    $arr[$index1] = $letter2;
}

function reverse($pos1, $pos2) {
    for ($i = $pos1, $j=$pos2; $i < $j; $i++, $j--){
        swapPos($i, $j);
    }
}

function printArray() {
    global $arr;
    for ($i = 0; $i < sizeof($arr); $i++){
        echo getCharAt($i);
    }
    echo "\n";
}

function rotateLeft($steps)
{
    global $head;
    $head += $steps;
}

function rotateRight($steps)
{
    global $head;
    $head -= $steps;
}

function move($from, $to) {
    global $arr;
    
    if ($to =$to; $i--){ 
            $newChar = getCharAt($i);
            setCharAt($i, $char);
            setCharAt($i+1, $newChar);
        }
    }
    else {
        $char = getCharAt($from);
        for ($i = $from+1; $i<=$to; $i++){ 
            $newChar = getCharAt($i);
            setCharAt($i, $char);
            setCharAt($i-1, $newChar);
        }
    }
}

function rotatePos($letter) {
    global $arr, $head;
    $index = 0;
    for ($i = 0; $i = 4) {
        $index += 1;
    }
    rotateRight($index+1);
}

function getLines() {
    $f = fopen("../day21.txt", "r");
    $lines = array();
    while (($buffer = fgets($f)) !== false) {
        $lines[] = trim($buffer);
    }
    fclose($f);
    return $lines;
}

function processLine($line) {
    $words = explode(" ", $line);
    if($words[0] == "swap" && $words[1] =="position"){
        swapPos($words[2], $words[5]);
    }
    if($words[0] == "swap" && $words[1] =="letter"){
        swapLetters($words[2], $words[5]);
    }
    if($words[0] == "rotate" && $words[1] =="left"){
        rotateLeft($words[2]);
    }
    if($words[0] == "rotate" && $words[1] =="right"){
        rotateRight($words[2]);
    }
    if($words[0] == "rotate" && $words[1] =="based"){
        rotatePos($words[6]);
    }
    if($words[0] == "reverse"){
        reverse($words[2], $words[4]);
    }
    if($words[0] == "move"){
        move($words[2], $words[5]);
    }
}


$lines = getLines();
foreach($lines as $line){   
    processLine($line);
}
printArray();
?>

This was my first foray in PHP in quite some time.  It was a bit more verbose than I remembered, but I still got this one relatively easy.

The main loop was easy, as it mostly took things line by line by line, and then chose a transformation based on the text.

Most transformations are straight forward.  I keep a global array and head pointer, along with a way to convert indices, get characters and set characters in the array.


$head = 0;
$arr = array("a", "b", "c", "d", "e", "f", "g", "h");

function convertIndex($index){
    global $arr, $head;
    $newIndex = $index+$head;
    while($newIndex < 0){
        $newIndex += sizeof($arr);
    }
    return  $newIndex%sizeof($arr);
}
function getCharAt($index)
{
    global $arr, $head;
    $newIndex =convertIndex($index);
    return $arr[$newIndex];
}

function setCharAt($index, $value)
{
    global $arr, $head;
    $arr[convertIndex($index)] = $value;
}

Swapping based on positions and swapping based on letters are pretty straight forward



function swapPos($pos1, $pos2) {
    $tmp1 = getCharAt($pos1);
    $tmp2 = getCharAt($pos2);
    setCharAt($pos1, $tmp2);
    setCharAt($pos2, $tmp1);
}

function swapLetters($letter1, $letter2) {
    global $arr;
    $index1 = array_search($letter1, $arr);
    $index2 = array_search($letter2, $arr);
    $arr[$index2] = $letter1;
    $arr[$index1] = $letter2;
}

Reversing and Rotating were also pretty easy.


function reverse($pos1, $pos2) {
    for ($i = $pos1, $j=$pos2; $i < $j; $i++, $j--){
        swapPos($i, $j);
    }
}

function rotateLeft($steps)
{
    global $head;
    $head += $steps;
}

function rotateRight($steps)
{
    global $head;
    $head -= $steps;
}

Once we get into moving (removing from one index and inserting in the other index), it took me a little while longer to get this.  I treat moving differently based on which direction I’m going to, and then I effectively “bubble” the values to the appropriate position.  I originally tried to do array slicing and recombining, but my wonky index recalculations made it tricky.


function move($from, $to) {
    global $arr;
    
    if ($to =$to; $i--){ 
            $newChar = getCharAt($i);
            setCharAt($i, $char);
            setCharAt($i+1, $newChar);
        }
    }
    else {
        $char = getCharAt($from);
        for ($i = $from+1; $i<=$to; $i++){ 
            $newChar = getCharAt($i);
            setCharAt($i, $char);
            setCharAt($i-1, $newChar);
        }
    }
}

Lastly, I worked on the rotate based on the position of a letter.  I pretty much searched for the letter in my array, then figured out how many rotations needed to happen.


function rotatePos($letter) {
    global $arr, $head;
    $index = 0;
    for ($i = 0; $i = 4) {
        $index += 1;
    }
    rotateRight($index+1);
}

 

Part 2

This part was to unscramble a password rather than scramble a password.  I reversed the lines of code, and reversed the relevant sections (such as rotating left when the command is rotate right)


function processLine($line) {
    $words = explode(" ", $line);
    if($words[0] == "swap" && $words[1] =="position"){
        swapPos($words[2], $words[5]);
    }
    if($words[0] == "swap" && $words[1] =="letter"){
        swapLetters($words[2], $words[5]);
    }
    if($words[0] == "rotate" && $words[1] =="left"){
        rotateRight($words[2]);
    }
    if($words[0] == "rotate" && $words[1] =="right"){
        rotateLeft($words[2]);
    }
    if($words[0] == "rotate" && $words[1] =="based"){
        rotatePos($words[6]);
    }
    if($words[0] == "reverse"){
        reverse($words[2], $words[4]);
    }
    if($words[0] == "move"){
        move($words[5], $words[2]);
    }
}

The tricky part of this one was figuring out how the rotate based on the position of a letter was handled.  Based on some pen and paper calculations, I found a way to derive how many rotations were needed to get to the next password


function rotatePos($letter) {
    global $arr, $head;
    $index = 0;
    for ($i = 0; $i < sizeof($arr); $i++){
        if (getCharAt($i) == $letter) {
            $index = $i;
            break;
        }
    }
    $numRotations=0;
    for ($j = 0; $j < sizeof($arr); $j++) {
        if ($j = 4 && ($j + $j + 2) % sizeof($arr) == $index) {
            $numRotations = $j+2;
            break;
        }
    }
    rotateLeft($numRotations);
}

 

Wrap-up

I had a lot of stupid mistakes in my part 2.  I kept not thinking through the problem.  Also PHP’s verbosity was weighing me down.  I felt like the array functions were clunky, and my code endd up all over the place.

I give myself a B- on this one.  I could have done better, and thought through the problems better.  My PHP code isn’t great either, so I wasn’t satisfied with this, but it’s better than some other ones.

Next up, is Day 22 with Elm.

 

Advent of Code 2016 Day 20 (F#)

Advent of Code 2016 – Day 19 (Swift)
Advent of Code 2016 Day 18 (Bash)

Advent of Code 2016 Day 17 (Ruby)

Advent of Code 2016 Day 16 (Scala)

Advent of Code 2016 Day 15 (Typescript)

Advent of Code 2016 Day 14 (Go)

Advent of Code 2016 Day 13 (Lua)
Advent of Code 2016 Day 12 (C#)
Advent of Code 2016 Day 11 (Groovy)

Advent of Code 2016 Day 10 (OcaML)

Advent of Code 2016 Day 9 (Factor)

Advent of Code 2016 Day 8 (c++)
Advent of Code 2016 Day 7 (Javascript)
Advent of Code 2016 – Day 6 (Julia)
Advent of Code 2016 – Day 5( Java 8)

Advent of Code 2016 – Day 4 (Perl 6)

Advent of Code 2016 – Day 3 (Clojure)
Advent of Code – Day 2 (Python 3)
Advent Of Code 2016 – Day 1(Haskell)

Day 20

Start: 12/26/2016

Finish 1/6/2017

Language: F#

SPOILER ALERT: If you have any inkling, any whatsoever, to work on the Advent of Code…. DO NOT READ THIS BLOG POST.  DO NOT LOOK AT MY GITHUB PROJECT.  It is no fun if you’re not solving it yourself, and you’ll feel so much better about yourself if you can figure it out without looking up an answer.  This blog post is not to give away the answer, but instead, is there for people to learn from.

As always, the following code is in my GitHub: https://github.com/pviafore/AdventOfCode2016

The Challenge

This challenge wasn’t too bad at first glance.  Given a list of blacklisted ranges of IP addresses, find the first IP address not in a blacklist.  I decided to give F# a go with this.  After OcaML didn’t go so well, I was determined to use my lessons learned and write some better code.

There was a long delay on this one due to Christmas, and a vacation in between, so I definitely missed my goal of 25 languages in 25 days.  But let’s see how far I can go.

Part 1

As usual, code first.


open System

let readlines  = System.IO.File.ReadAllLines("../day20.txt")
let toInts arr =  Seq.map uint32 arr
let getFilterFunction range =  (fun x -> x  (Seq.last range))
let uintRange = seq { System.UInt32.MinValue..System.UInt32.MaxValue} 
let allFiltersPass (filters:seqbool)>) (num:UInt32) = Seq.forall (fun f -> (f num)) filters
let skipIfOutOfRange filterFuncs = uintRange |> Seq.skipWhile (fun x -> (not (allFiltersPass filterFuncs x)) )

[]
let main argv = 
        Seq.toArray readlines 
        |> Seq.map (fun x -> x.Split[|'-'|])
        |> Seq.map toInts
        |> Seq.map getFilterFunction
        |> skipIfOutOfRange
        |> Seq.head
        |> printfn "%d"
        0


This wasn’t too bad, as I read and sanitize the input to be integers.  Then I just start iterating through numbers from 0 to MAX_INT until I find one that doesn’t fit within all the functions

Part 2

Part 2 is much tougher.  Instead of finding the first non-blacklisted IPs, we needed a count of all non-blacklisted IPs.

The basic idea was to start at zero, and then find the first number that is not in a blacklisted range.  Then find the next number that is a range and subtract the difference.  Add that difference to the sum, and start again with the ranges that are left.

First, I had to implement a solve method to do the basic checking


let rec solve num accum  ranges = 
        let matching = (getFiltersMatching num ranges)
        let remainingRanges = (getRemainingRanges ranges num)
        match Seq.isEmpty matching with
        | true ->
            match (Seq.isEmpty remainingRanges) with
            | true -> accum + (System.UInt32.MaxValue - num) + 1u
            | false -> 
                let invalidNumber = (getFirstInvalidNumber remainingRanges)
                let diff = invalidNumber - num
                solve (getNextStartingNumber (invalidNumber+1u) remainingRanges) (accum + diff) remainingRanges
        | false ->     
            let lastValid = (getLastValidNumber matching)
            match lastValid with
            | System.UInt32.MaxValue -> accum
            | otherwise -> solve (lastValid+1u) accum remainingRanges
       

[]
let main argv = 
        Seq.toArray readlines 
        |> Seq.map (fun x -> x.Split[|'-'|])
        |> Seq.map toInts
        |> solve 0u 0u
        |> printfn "%d"
        0

This was ugly code, to be sure.  First I check if I’m already in a range, and if I am, either I’m at the end of my int range, or I need to recursively check the number out of my current range.  If I’m currently in a number not in a range, I need to check what the next invalid number is.  I subtract my current number from the invalid number and then add it to an accumulator.

I had to write a few utility functions to find information about the ranges


let getFirstInvalidNumber ranges =
         ranges
         |> Seq.map (fun r -> (Seq.head r))
         |> Seq.min

let getNextStartingNumber num ranges = 
        getFiltersMatching num ranges
        |> Seq.map (fun r -> (Seq.last r))
        |> Seq.filter (fun x -> x >= num)
        |> Seq.min

let isNumBeforeRange num range =
        num  Seq.filter (fun r -> (isNumBeforeRange num r) )

let getLastValidNumber ranges =
         match (Seq.isEmpty ranges) with
         | false ->
                ranges
                |> Seq.map (fun r -> (Seq.last r))
                |> Seq.max
         | true -> System.UInt32.MaxValue

These were just straight forward sequence operations.

 

Wrap-up

F# did not go as smoothly as I wanted.  I got part two wrong at first, and it took me a while to write ugly code.  The documentation was great though, and Visual Studio Code was a blast to write F# in (inline type annotations? Yes, please.)  I would definitely consider F# for a .NET project over OcaML.

I give myself a C+ on this one.  I had a vacation in the middle, but I still had some time on either end that I was working on this one.

Next up, PHP.